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Alpha stable distribution has no closed-form expression for the
probability density function. Presented is a very concise approximate
model for symmetric a-stable (SaS) distribution, which is basically a
simplified version of the Cauchy-Gaussian mixture (CGM). The pro-
posed model enjoys the advantages of good fitness and analytical
tractability.

Introduction: The non-Gaussian noise in the practical world can be well
characterised by its impulsive nature. Typical impulsive interference
may include atmospheric noise, ambient acoustic noise and lightning,
switching transients, etc. Since 1993, there has been tremendous interest
in the class of symmetric a-stable (Sa.sS) distributions [1], as a general-
isation of Gaussian distribution, which can model a wide range of
phenomena of varying degrees of impulsivity [2]. In a detection and
denoising region, optimal processing is feasible if the noise probability
density function (PDF) is analytically known and tractable.
Unfortunately, such an attractive model for impulsive noise has no
closed forms for the probability densities except for two special cases
[1]: Gaussian and Cauchy distribution. This has limited further appli-
cations of the a-stable distribution family.

Previous work: Numerically the a-stable PDF can be obtained by taking
the inverse Fourier transform of characteristic function [1]; however, it
does not provide an analytic form, thus is not suitable for real-time appli-
cations owing to the intensive computation. Although asymptotic series
are available for SaS density function with o > 1, these asymptotic
series expansions [1] fit well only in the tails and the neighbourhood of
the origin of the PDF, while for intermediate values the approximation
deviates from the actual PDF values [3]. Moreover, they are not convenient
for processing of the tremendous series. Comparatively, the approximate
mixture model is a more feasible method. Currently, there are two
classes of approximation mixture models, one is a scale mixture of the
Gaussian PDF, which approximates the PDF by a finite number of the
Gaussian mixture model (GMM) [2, 3]. GMM fits the SaS distribution
well but it cannot capture the algebraic tails of alpha stable distributions
with small numbers of Gaussian components N. To achieve accurate
approximation, N usually takes a value larger than 8 [2], hence loses the
analytical convenience. The other method is a Cauchy Gaussian mixture
model (CGM), the PDF of which is given by [4]
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where ¢ is the mixture ratio, o‘z is the Gaussian variance and v is the
Cauchy parameter. Using the EM algorithm, Swami achieved the para-
meters for estimation of such a model [4]. However, the complexity of
Swami’s approach is somewhat high owing to the iterative estimation
for the triple parameter (g, gy, ). In order to develop more tractable
approximation models, we introduce a simplified CGM with only two par-

ameters, which fits SaS density well, and meanwhile is of very low com-
plexity and more analytical convenience.
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Bi-parameter CGM model: To achieve an approximation model with
less computational burden, we considered a simplified Cauchy
Gaussian mixture model with a bi-parameter (g, o), which is defined as
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where ¢ is the mixture ratio, and o is the scale exponent of the Sa.S dis-
tribution. We call such a CGM model as bi-parameter Cauchy-Gaussian
mixture (BCGM) models. To obtain the appropriate value of the ratio
parameter &, McCulloch proposed an empirical equation € =2 — «
for o =1 [5]. However, such a linear relation between ¢ and « is not
optimum in a maximum likelihood (ML) sense. Here, we propose
another equation with more accuracy by utilising the fractional lower
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order moment (FLOM). Let X be a real SaS random variable, then
Bt = | 101 = e)foto) + ol ()

where p < a. For Cauchy and Gaussian distribution, define m% = [
xlPfe()dx = C(p, Do?  and  mf = |7 xPfo(x)dx = C(p, 2)o?,
respectively. Thus (3) can be rewritten as E(|x[’) = (1 — &) ml; + emf..
Then it is easy to see that &€ = (E(|x|") — m%)/(m% — mZ). Utilising the
equality E(|x|”) = C(p, a)o” where
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[1], we further have
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After straight manipulations we can get € = 2I'(—p/a) — ol'(—p/2)]/
[2a-T(—=p) — al'(=p/2)]. To test the effectiveness of the above
equation, we adopt the ML estimate value as the benchmark, and
compare the result of our proposed method with the empirical equation
by McCulloch. Fig. 1 shows that our method utilising FLOM matches
the ML results very well and is better than the results by the
McCulloch equation.
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Fig. 2 Comparison between CGM (KL = 0.2172) and BCGM (KL =
0.1120) in case of a = 1.2

Performance evaluation: To compare the performances of various
approximations, KL distance [2] is introduced as the measure. First,
we generate 11D standard SaS sample series of length 10° by the
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generator proposed by Chambers et al. in [6] and evaluate the histogram
of samples. Next, we compare the approximate PDF’s with the empirical
PDF (i.e. histogram) and calculate respective KL distances. In the case
of a = 1.2, which is close to the Cauchy distribution, comparison
between CGM and BCGM is as shown in Fig. 2. The result illustrates
that the proposed BCGM model (KL = 0.1120) is superior to the
CGM (KL = 0.2172). In another case of a = 1.8, which is relatively
close to the Gaussian distribution, the approximation performances of
BCGM and GMM are as shown in Fig. 3. The KL distance of the
BCGM model is slightly greater than that of GMM with N = 10,
which are 0.0715 and 0.0186, respectively. However, BCGM has a
more tractable form than GMM has in that the parameters of the pro-
posed BCGM have closed-form expression.
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Fig. 3 Comparison between GMM (KL = 0.0186) and BCGM (KL =
0.0715) in case of a« = 1.8

Conclusion: We propose a novel bi-parameter Cauchy-Gaussian mixture
model which can well approximate the SaS probability density. The main

feature of the BCGM model lies in the very concise expression, which
makes it better for tasks such as signal detection and denoising if com-
pared with other popular approximation models such as GMM.
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